VGON Environment Setup¶
VGON scripts here require Python version 3.11 and above.
This guide provides instructions for setting up the VGON (Variational Generative Optimization Network) environment using either uv
or pip
.
Prerequisites¶
- Python 3.11 or higher
- Git
Method 1: Using uv (Recommended)¶
uv is a fast Python package manager and project manager, whose installation is simple as guide
Setup with uv¶
- Clone the repository to local disk.
-
Create virtual environment if it wasn't contained
The python virtual environment will be located at.venv
fold under root path in default. Linux/macOS users could activate it in shell by typing -
Install dependecies in
.venv
for VGON scriptsplot
andnotebook
groups are optional for VGON itself. -
Running experiments with uv
Method 2: Using pip¶
Setup with pip¶
# Clone the repository
git clone <your-repo-url>
cd VGON
# Create virtual environment
python -m venv venv
# Activate virtual environment
source venv/bin/activate # On Linux/macOS
# or
venv\Scripts\activate # On Windows
# Upgrade pip
pip install --upgrade pip
# Install PyTorch (CPU version)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
# For GPU support (CUDA 12.1), use instead:
# pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# Install the package with dependencies
pip install -e .
# Install optional dependencies
pip install -e ".[plot]" # For plotting
pip install -e ".[dev]" # For development
pip install -e ".[gpu]" # For GPU acceleration
pip install -e ".[all]" # Install everything
# Manual installation of ptitprince (if needed)
pip install git+https://github.com/pog87/PtitPrince.git
Verify Installation¶
Test your installation by running a simple example:
import torch
import pennylane as qml
import numpy as np
# Test basic functionality
print(f"PyTorch version: {torch.__version__}")
print(f"PennyLane version: {qml.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
# Test quantum device
dev = qml.device("default.qubit", wires=2)
print("✓ PennyLane quantum device created successfully")
Project Structure¶
VGON/
├── BP/ # Barren Plateau experiments
│ ├── HXXZ/ # Heisenberg XXZ model
│ └── Z1Z2/ # Z1Z2 model
├── Degeneracy/ # Degeneracy detection experiments
│ ├── H232/ # H232 Hamiltonian
│ └── MG/ # Graph states
├── Gap/ # Nonlocality gap experiments
└── results/ # Experimental results
Running Experiments¶
Barren Plateau Experiments¶
# HXXZ model
python BP/HXXZ/vgon_xxz.py # Run VGON training
python BP/HXXZ/vqe_xxz.py # Run VQE baseline
python BP/HXXZ/plot.py # Generate plots
# Z1Z2 model
python BP/Z1Z2/vgon_z1z2.py
python BP/Z1Z2/vqe_z1z2.py
python BP/Z1Z2/plot.py
Degeneracy Detection¶
# H232 Hamiltonian
python Degeneracy/H232/H232.py
python Degeneracy/H232/plot.py
# Graph states
python Degeneracy/MG/MG.py
python Degeneracy/MG/plot.py
Nonlocality Gap¶
Troubleshooting¶
Common Issues¶
- CUDA not found: If you have a GPU but CUDA is not detected, reinstall PyTorch with CUDA support
- PennyLane device errors: Ensure you have the correct PennyLane plugins installed
- Memory issues: Reduce batch sizes in the configuration files
- Import errors: Make sure all dependencies are installed correctly
GPU Setup¶
For GPU acceleration:
Development Setup¶
For contributors:
Support¶
- Paper: Commun Phys 8, 334 (2025)
- Issues: Create an issue on the GitHub repository
- Documentation: See individual module docstrings and comments
Development Containers¶
DevContainers' configuration in vscode/GitHub Codespace.